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ABSTRACT

2 This paper considers the simplest model of change-point in which at most

one change in the mean may occur. Results include:

1) Introduction of a test for the null hypothesis that no change in

the mean occurs, and the limit distribution of the test-statistic.

2) Approximate calculation of the power of the test.
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TESTING AND INTERVAL ESTIMATION IN A CHANGE-

POINT MODEL ALLOWING AT MOST ONE CHANGE

Xiru Chen

1. INTRODUCTION

Consider the model

X(t) = f(t) + e(t), 0 <t <1 (1)

where f(t) is a non-random function of the form

a, O<t<t 0

f(t) =
a+e, to < t< 1

with a, e, t0 unknown and 0 < t0 < 1. t0 is called the "change-point"

(of the function f, or of model (1)), and e the jump at the change-

point. e(t) is a random variable whose distribution function F is

independent upon t. We assume that E(e(t)) = 0 for t G [0, 1], and
j2

e(t) possesses a finite variance a2

We desire to make inference on t0 and 0, using observations made

on {X(t)}o In this paper we assume that these observations are taken on

equal-paced t values, Specifically, we observe X(i/n), i = 1...,n.

Note that X(i/n) depends upon both i and n, but for simplicity of notation

in the sequel we write Xi instead of X(i/n). We assume that XI,..-,Xn

2
are independent. These assumptions and notations, such as a, e, a , F

are valid throughout this paper, and will not be mentioned latter.

Model (1), the so-called AMOC (Allowing at Most One Change), is the

LM
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simplest model for change-point. As an important and extensively studied

model, there exists a huge literature on it, and we refer to Krishnaiah

and Miao (1986), Cs'Orgo and Horvath (1986) for a detailed survey of this

subject.

The methodology of the present paper is nonparametric in nature,

in that we do not resort to likelihood and thus, the normality condition

can be dispensed with. The work borrows an idea advanced by Yin (1986).

This idea proposes to search the possible change-point by comparisons

made locally, The method has the merit that the resulted statistic

in testing the null hypothesis

H 0 : a = 0 (i.e. no change-point exists) (3)

has a simple asymptotic distribution. This not only facilitates the

testing of Ho , but also is convenient in estimating the power of test,

and in constructing a confidence interval for the change-point to.

These problems will be studied in Section 2, Section 3 and Section 5,

with different assumptions on F. Section 6 is devoted to a brief

discussion about the statistical inference on the jump 0. Section 4 is

related to the estimation of variance 2.

O0
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2. F IS NORMAL WITH A KNOWN VARIANCE

In this section we consider the case that

F--.j (O~a2(4)

and a2 is known. The method is based upon the following theorem.

THEOREM 1. Suppose that X 19 ... Xn are independently and identically

distributed (iid) with a common distribution N(a,i 2). Let f = f n be

a positive integer such that

li /n = 0, "m(logn)2/i? = 0 (5)

Define

m m- t
Y A..m x - XI , i 2f, 2 (+1, (6)

m v'7T m-e+l m-2e+1 *

A (x) =[2log(3n/2C-3)]-/ (x+2log(3n/2('.3) + JIoglog(3i/?9-3) - 3lnr)()n2

Then, lim P( Ia < A (x)) =exp(-2e-x), - x <(9)n-'- n n

Proof. Construct a Standard Brownian Motion fW(t), t > 01 such

that

W( 3m) =V/U-(Xi+...+Xm ma)/a, m =1,2,...

and put

Z(t) = 3-1 /2 [W(t)-2W(t+3/2) + W(t+3)], t > 0

Then it is seen Ym aZ(3m/2f-3), m =2e, 29-1......Put

OLm
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En = sup{IZ(t)T :0 < t < 3n/2t-3}, nn = n - n/ (10)

We show that

lrn nn /T5ogn 0, a~s. (11)

In fact, we have
4

0< nn <- sup{IW(t+s) - W(t): 0 < s < 3/2Z, 0 < t < (3n-3)/2Z-3}

Insert T = 3n/2t - 3, h = 3/2Z, e = 1 and x = (V/"4)V7T-6g-n6

in lemma 1.2,1 of Csb'rgo and Revesz (1981), we get

P(n vTo __ s) < C n exp(-6 2L/24logn) (12)

.,.

* Here 6 > 0 is given and C is a constant not depending on n, Since

Z/(logn)2 -) Co. (11) follows from (10) and Borel-Cantelli Lemma.

Z(t) is a stationary Gaussian process, with EZ(t) = 0, and

( - 0 < < 3/2

P(T) = Cov(Z(t), Z(t+T)):=" +T1/3, 3/2 < IT! < 3

0 3 < HT

Thus, the conditions of a theorem of Quails and Watanabe (1972) are met

and we have

lim P(7 < A (x)) = exp(-2e-x) (13)
n-~ n- n

For n large we have

An (x+Ax) - An (X) > AX/v2ToFg-, Ax > 0,

< Ax//2-gn, AX < 0.

).
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Hence

P(; < A (X-IAxi)) - P(n > fAxl/ )nn

< P( n /a < A n(x))

< P(En < An(X+IAxI) + P(nn > Ax(/v2T15) (14)

For n large. From (12) - (14), letting n-and then Ax -0 0, we

get (9). Theorem 1 is proved.

Theorem 1 suggests a way to test the hypothesis (3): For the chosen

size a, 0 < a < 1, solve the equation exp(-2e-x) = 1 - a, the solution is

X((a) = -log(- log(1-a))

K Calculate d = 2Z/n, C n(a,d) = An(x(a) and reject the null hypothesis

(3) when and only when

n >  C n(a,d) (15)

Under condition (3), this test has an asymptotic size a as the sample

size n tends to infinity.

We give an estimate of the power a(e) = an (e,) of this test,

For this purpose, let r be the integer satisfying

r/n <t 0 < (r+l)/n (16)

Then Yr+. " N(V72 eo 2 ). Therefore,

"(6) > P(JYr+eI > Cn(a,d))

= n (C,d)) + (.oLI - Cn(ad))

"> ( C ,d) (17)
2 n

V
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where D is the distribution function of N(0,1), From this inequality

it is seen as is obvious intuitively, that for gaining a larger B(e),

one should give t a larger value.(17) Also suggests, as is again

obvious intuitively, that 6(e) increases steadily with lei/a, the

magnitude of the jump measured against the standard deviation a.

Practically, the presence of a change-point is of importance only when

the ratio jeli/ is substantially different from zero,

Now consider the interval estimation of the change-point to. The

existence of t0 may be a fact known in advance, but usually it is

evidenced by the rejection of the null hypothesis (3). Regardness which

is the case, we adopt the following

RuZe. Find integer k such that IYkl = n . Take [(k-2Z)/n,

k/n] as the confidence interval of to.

The length of this interval is d = 2e/n, Therefore, to enhance

the accuracy of this estimate, one should choose a small t. But there

are other things to be considered. First, if the existence of t0 is to be

decided by the test defined above, a small t increases the risk of

false acception of the hypothesis (3), when in fact it is untrue,

Second, a small Z corresponds a low confidence coefficient of the

interval To be more specific, we give an estimate of the confidence

'P. coefficient y of this interval, as follows:

=p(k-2t<__t O <__ )
n -0n

>_ P IY Im < a Cn(, d n lYr+ol > a Cn(all

Sc m, (r,.+2_) m - nr r+2, n

Ir Since Xm , X M-9..Xm2- are iid when m C(r, r+2e), by Theorem 1 we have

rn-i' ' m-2C-



7

( suprr2 I < a Cn(ad) > P(n < a Cn('d)) ",i - a (18)

where the probability P(n < a Cn(ad)) is computed under the condition

that Xl,.ooX n are iid. Hence, neglecting the error in the latter

equality of (18), we have

y > (1-a) + P('Yr+l >a C_(a,d)) - I

> (D - C n(a,d)) - a (19)

and this inequality suggests that y should increase with el/a.

Using (19), we can give the following important question an approxi-

mate solution: Form a confidence interval of t0 with prescribed

length d0 and confidence coefficient 1 - aO0. The question is how

to choose e and n. To do this, give a in (19) the value a/2, and

solve the equation

P(eIl/TI(v)- Cn(c,d)) = 1 - a 02

to obtain

f 2(10L )-2(C (a,d) + U n 2t/d (20)

Here U 2is the upper O/2 - point of N(0,1).a/2'

The solution (20) has the trouble that it involves the parameters

,' e and 6, the former is surely unknown and the latter is usually unknown.

In some cases it may be feasible to take some preliminary samples to

give a crude estimation of them, but we recommend the following proce-

dure: Decide by practical consideration a constant M such that only
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when el/a > M, the change-point t0 is of any real importance.

Replace tel/a in (20) by this M.

For example, take a0 = 005, d0 = 0.1, M = 2, (20) gives

Z = 1946, n = 389.2

The result seems rather good as it is comparable with the sample size

which is needed in estimating the probability p of the binomial

B(n,p). The sample size needed to guarrantee a confidence interval of

p not longer than 0,1 and with a confidence coefficient not smaller

than 0.95 is roughly 384. So when jel/a is not smaller than 2, which

seems a moderate requirement in practice, we are in a situation com-

parable to one seeking an estimation of the binomial p.

n,

Aw

S.
.f.,

4.?

°.-

'7.
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* 3. F IS NORMAL WITH VARIANCE UNKNOWN

When the variance 2 is unknown, we use the sample X1,. n
to estimate it- Denote by c2 the estimator of a2, we use a to replace

, in (15) to perform the test. In order that the resulted test still

has an asymptotic size a, the estimator a2 must satisfy certain condi-

tion stated in the following theorem.

THEOREM 2. Suppose that the conditions of Theorem 1 are met, and

C ois an estimator of 2 satisfying

lim 2 0 02 logn = 0 (21)

p means convergence in probability. Then

lim P(cn /a < An (x))= exp(_2eX) (22)

Proof follows easily from Theorem 1. For, from (21) we have

pa - ollogn-PO. Thus, for arbitrarily given c > 0 we have

P( n/ < A n(x)(1-e/logn)) - P(I a- alogn > E)

< P(&n < A n(x))

< P( / < An (x)(l+c/logn)) + P(ja - ollogn > c)

Given 6 > 0. For n large we have

An(x-6) < A (x)(1-e/logn) < An (x)(Z+c/logn) < A n(X+6)
'T f A n -argn n n

Therefore, for n large we have

..
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P(En/c < A (x-6) - P(Ia - ajlogn > 0
n -n

< P(N/ < A n(x))

-_< P(n/ < An(X+6)) + P(jo - allogn > E)(n -
Letting n -,. and then 6 -, 0, we obtain (21)

Estimation of the variance a 2

Under the normal assumption here, the maximum likelihood estimator

has the form (26) given below, The following theorem shows that this

estimator satisfies (21).

THEOREM 3. Suppose that {N1,N2,...} is a sequence of positive

integers tending to infinity. For each n, there are given Nn indepen-

dent variables Xni ' i = 1,...,Nn, such that

Xni - F(x), i = 1,...,m n, Xni -F(x-e), i = m +1,...,N

where F is a distribution function whose moment of (2+6)-th order

exists, e is a constant. Define

N Nn

Xnc C n2c I (Nn-C), = Xni/Nn (23)
1 c+11

c Nn2 C2
Snc = (Xni-nlc)2 + I (Xn-Xn)2, c lt1...Nn (24)

1 c+1

S2(n) = minS2 C = 1 N (25)

^2 = -2 2
an  S (n)/N n  (26)

PQ



Then we have,

lrn rY2 2
nl-im I ̂ n a2logNn =P 0 (27)

where a2  is the variance of F.

Proof. For simplicity of writing we shall in the sequel omit the

symbol n in all notations. Thus, Xni mn, Nn' Xnlc Xn, S2(n)

and a2 will be abbreviated to X., m, N, , Sc2 2 2 and o2

respectively. Put Yi = Xi - EX., Ti = Y1 + ".. + YV Given c > 0,

from Kolmogorov inequality we have

P(IT c/C I < e/logN, Ns/logN < c < N) > 1 - D(logN) 4/N (28)

P(I(TN-Tc)/(N-c)I < F/logN, 1 < c < N(l-e/!ogl) >1 - D(logN)4 /N (29)

Here and in the following we shall use D to denote a constant not

depending on n, which may assume different values in each of its

appearance. From (28), (29), we have

P(ITc/cl < E/logN, I(TN-Tc)/N-c)I < e/logN

Nc/logN < c < N(I-c/logN)) > 1 - D(logN) 4/N. (30)

First consider the case e = 0. Since

S- 22 - - ( ic- 2c) (31)

and Xlc - X2c = Tc/C - (TN-Tc)/(N-c) when e = 0, We have by (30)

and (31) that

-I
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>1 - D(logN) 4/N (32)

For C < NE/logN we have

S- S2 Ne/l ogN (1_2)

N/logN 2 + og' - 1  i (33)

For C N(1-e/logN) one obtains similarily

c N

- ~ l2 o/)1gX2

From (32) -(34), and putting

2 2 1 N NC/logN N

'r -gN+ T-e 2f 1 N 1 *i N(1-c/logN)1  (5

We have

P(2̂-S 2/NjlogN > Q) < D(logN) 4/N (36)

Denoting by a the expectation of variable X1. we have

I mp(Q < 6e(a 2+0 +1)) 0 (37)

Further, it can easily be shoWn that under the conditions of the present

theorem, there exists S' >0 such that

"mNS(,2_SN/N) 0O (38)

From (36) -(38), (27) follows,

tiV
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Now turn to the case of e 0 0. Put
cZ +1 x/(c-m), c < m

mc j ~ (m-c) , c <m

Then one can easily verify that

2 _ S2 >I(-)Yc 2S-2

I-(m-c)(X lc-0)2 c < m

Given E:> 0 small enough. Write

J = {c : Nc/logN < c < N(1-s/logN)

and separate the following four cases:

1. CTJ.

As in the case of e = 0, we have (33) and (34)

2. C G J, N1 / 3 < Ic-mi < N7/ 12

By Kolmogorov inequality, we have

P( 72c-(a+e)I < c/logN, C G J) > 1 - D(logN)4/N (40)

P(I -(a+e)l < :/logN, N1/3 < c - m < N7/12 ) > 1 - D(logN) 2N- 1/12 (41)

P(f -aj < e/logN, N1/3 <m - c <_ N7/12) > I - 0(logN)2N"11 12  (42)

From (40), (41), and the first part of (39), we get

P(S2_S 2 > 4c2N7/12/(logN) 2, c G J, N1/3 < c Nm < 7/12
C m ----

1 - D(logN)2N"1 /12 (43)
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The case of c < m can be handled by (40) (42), and the second part of

(391 resulting in an inequality similar to (43). Combining the two, we

obtain

P(S2-S 2 > - 4E:2 N7/12/(1ogN) 2, c Q J, N1/3 < Ic-mi <_71

>1 - D(logN)2N-1/12  (44)

3. C G J, ic-mi > N 7/12

Kolmogorov inequality gives

POi -(a+e)l < s:/logN, c -m > N7/12) > 1 - D(logN)2N-1/6  (45)

P(J -ai < c/logN, m -c > N 7112) > 1 - D(logN)2N-1/6  (46)

From (40), (45) and the first part of (39), we get an inequality

similar to (43). Likewisely, from (40), (46) and the second part of

(39), we get another inequality, Combine those two, we get

P(S2-S2 > - 4F-2N/(logN)2 , CGJ, ic-mi > N7/12)

>1I - D(logN) 2N1/ (47)

4. cGJ, Ic-mi < N1/3

For c m, we have by the first part of (39)

Sc _ Sm > - 2N1 ( 2)c - c /3~ mN 2 (48)

From (40) we have P( 72cl .1 a I+ I I + 1, c G J) > 1 -D(logN )3 /N,

Also it is easy to see that

.4
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2m+N3 2< N12) > DN-1/6

m

Hence, from (48) we get

P(Sc - S2> - N6/7 ' cGJ, m < c < m + N1/3) > 1 - DN1 /6P( m ... +

This combining with the similar inequality obtained for the case of c < m,

gives

P(S2 _ S 2 > - N6/7 cGJ, Ic-ml . < N1/3 ) > 1 - DN-1/6

c in

Combine this, (33), (34), (44), (47), define Q as before, and notice

that SN > S2 > S2 , we obtain

P(IS 2/N-a IlogN > Q) <_ D(logN)2N -I/12  (49)

Similar to the case of e = 0, here we can still prove that there exists

a constant R not depending on n, such that lim P(Q > Re) = 0. Also,

under the conditions of the present theorem, we can find 6' > 0 such that

N61 a2 - S2 /N - 0 in probability, These facts, combined with (49), giveSm/N

(27), and the theorem is proved,

r!A. " ' '"''"'3 ' ' " Il!' ' . I :
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4. BIAS OF THE VARIANCE ESTIMATOR

Maintain the notations of section 3. Since 2= min{S 2} < S2, and

ES /(N-2) = , we see that even if we replace 2 by 2= 2 (N-2),

ez still underestimates a2 Intuitively it seems clear that the bias

should be more serious if leVo is small., So we propose to loaL, in some

detail the bias in case that e = 0.

From (31) we have

1 (S2_2 )  max N c T)2 s IzN(t)I// t)12 A n
S I<c<N C(N-c) c'i ) O<t<n

where Tc = Jc(X 1-a)/a, and

(T[(N+I)t] - [(N+I)t]TN/N)/4fT, 0 f t < 1

ZN(t) = ,

When X is normally distributed, or more generally, when EIXI < for

some 6 >2, the following asymptotic distribution is valid (Yao and

David (1984), Csorgo and Horvath (1986)):

4-lim P( ,/ 2n - (21og2n.log 3nlog7) < x) = exp(-2ex)

Here logk +l(x) = loglogk(x), loglx = logx. From this, we deduce the

Vfollowing asymptotic distribution for the bias

U.

S2 /2limp/ N"

2 < 21og2N+log 3N-logw+x ) = exp(-2e -x ) (50)
Pa

.." - V* * m"% ,4- . "r

iil . . . ., . . • -.,. ".'... .. .4. ,. ., ,,
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This asymptotic result suggests that the bias has a form

S - S2 = 2log2 N + log 3 N + Q (1)

Further, since the distribution function exp(-2ex/2 ) has an expecta-

tion 2y + 21og2 = 2.5 + (y - the Euler constant), (50) suggests that

when N is large, we may take

S2/(N-1-(2log 2N+log 3N-logr) - 2('y+log2)) = S2/(N-2log 2N-log 3N-2 4)

S2
as the estimator of 2  in order to bring down the bias.

In some applications we might know in advance that there exist some

constants XI' X2' 0 < Xl < X2 < 1, such that the change-point t lies in

the interval [X1 ,X2], In this case we may use

S2 (x 2) min(S 2 : XiN < c < x2N)

instead of S2. We have

N sup IZN(t)1/v t(_ t vN
i < _ 2

It is shown (Csorgo and Horvath (1986)) that as N - , vN converges to

v = sup(IV(s)! : 0 < S < 1og(X2(1-Xl)/Xl(l- 2))), where fV(s) : S > 01

is the Ornstein - Uhlenbeck process, ie., a Gaussian process with mean

zero and covariance function exp(-It'-sl). The distribution function of

v has been tabulated by DeLong (1981). Put E(v) = C(NIx 2), it is
2 2

reasonable to take S2 ( 1 ,A2 )/(N-1-C( X1 2) ) as an estimator of

An upper bound of C(X1,X2 ) can be estimated in the following way.

Put X = min(x1 , 1_X 2 ). We have
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2 N 2S ( * N2(1-x)N1

c_ N N TNc

1max 1- 1 T 2II

< X(1-7X LXN<c<(1-X)NI~ c N IN I

max 2 1 max 2
<X- 7X N<c<(IXlNiB(t) " < -- t__laxB(t)

Where {B(t), 0 < t < 1} is the Standard Brownian Bridge.

The distribution function of max 1 B(t)j is well-known as

1 - 2(-1)k+lexp(-2k2x2 ). From which it is easy to getI , I

,l max IB(t) I I =I+ + + 40.85
LO<t<l 22 3 2 42

Hence,

C(X1 X,2 ) < 0.85 X 1(1-X)'

Therefore, if we use

CF2(X 1, X2) = S2(X 1, X2)/ (N-2)

to estimate a2 , the relative bias does not exceed

[2 _ ̂2 2= 1 -1
S-E2 (X1 , 2 )]/o2 : (085 X (1-X) - 1)/(N-2) (51)

For example, take 1= 1 - X 2 = 0.1. This value can perhaps be considered

as small eno,gh for many applications. Take N = 100. According to (51),

the relative bias does not exceed 8.6%, which is reasonably good, con-

sidering the relatively small sample size 100 in estimating the variance

of a complicated model.

1NJO
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5. F IS NON-NORMAL

When the distribution of the random error e(t) is non-normal, we can

i- use the theory of strong approximation of partial suns of iid. variables

by Brownian Motion Process to give extensions of Theorem 1 to non-normal

cases. In this way the methods of previous sections can still be

applied.

THEOREM 4. Replacing the assumption of Theorem 1 that

'.e XI'- N(a,o 2 ) by

* E(exp(tX1 )) < - for jti small enough (52)

Then the conclusion of Theorem 1 remains valid.

Proof. Put

Sk = (XI + ". + Xk - ka)/o, k = 1,2,...

According to Koml6s and others (1975, 1976), there exists a Brownian

Motion process fW(t), t > O} such that

lim sup sup W(k)/logn < , a.s. (53)
n-~ k<n Ik-Wk

Since

V/ o :[(S -S m ) - (S m -S m _2 )1/v " "
Ym /=USm- m-e -(m-C m-2Z /V

I We have for m < n
sup S l.k / (54)

iYm /a-[W(m)-2W(m--)+W(m-2Z)]/vI < 4 l<k<n -sup(54

According to (53), noticing that Ingn/v- 0 as n - ', we get

O*1 -
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lim [suplYm/a-[W(m)-2W(m-z) + W(m-2Z)]//T1] = 0, a.s. (55)n- m< n

From Theorem 1, we have

lim Psup([W(m)-2W(m-Z) + W(m-2Z)]/v'2I : m = 2,.,,n)}

n-n <AIn (x) = exp(-2e-X), - < x < (56)

Finally, (7) follows from (55) and (56). Theorem 4 is proved.

Since under the assumption (52) the conclusion of Theorem 3 is also

true, it follows that the method of the previous two sections applies

to the case in which (52) is true.

The condition ensuring the asymptotic results in sections 2, 3, can

further be substantially weakened.

THEOREM 5. Replacing the assumptions of Theorem 1 that Xl-. N(a,a 2)

and (logn)2/Z - 0 by : For some 3 > 2

EIX 1  < (57)

lim n2//I = 0 (58)

Then the conclusion of theorem I remains valid.

The proof parallels that of Theorem 4, with the help of

another result of Kimlos and others, which asserts

i pk<n ISRW(k)In' = 0, a~s.

under condition (57).

* -- - - ~ fl. -I rC
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6. ESTIMATION OF JUMP e

To form a point estimate of the jump e at the change point to,

we suggest the following procedure:

1. Find k such that lYki = n.

Compute

n= n- - (59)
k+11

a is taken as an estimate of e.

* When k = 2f, or k = n, e is not defined, In general, if k is

too near 2t or n, this would imply that the change-point t0  is too

near 0 or 1, and the samples at our disposal are perhaps not enough to

give a reasonable estimate.

For an interval estimation of e, we prove the following asymptotic

theorem about e.

THEOREM 6. Suppose that the 6-th order moment of distribution F

is finite for some s > 2. Further, e 0 and f satisfies (58)

and t/n - 0. Then as n we have

(vnt(lto)FI)( e)_a - -e N(0,1) (60)

where L stands for convergence in law.

Proof. Without losing generality, we assume a = 0, a = 1 (see

section 1). Using Theorem 5 and slightly modifying the argument of section 2

we easily show that

-
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1liP(nt 0 < k < nt0 + 2) = 1 (61)

4N Define nI = [nt 0-2], n2 =n - [nto+2e] - 1, and

w~iln 
ni

T nt(" t)(n-n2+ " ) - X (62)

Since /n 0 0 < to < 1, we have as n *

T n L N(0,1) (63)

Now,
Cn- k- n

:Tn_- ;'to(lt 0) (e-e) = ntocl-to)£n. 2-- _k) Z (Xi'e)

n-n2+1

n-n2  k_2-nl nI  k-2t

.- ' k+l (Xi-e)-nl1k2Z) Xi

Therefore,

Sup{ I - (- :nt0 < k < nt0 + 2}:,Z"-., n Vn -tI

S C .SuP( ( e)I j >_ n- 2 + 1)

n-n2
+ n 11 2Supd . (Xi'e)) :n] + 1 < j < n - n2 )

+ n- 2 Z.Sup(I Xi 1 < j < n1 )

+ n-1/ 2Sup(J1+lXi1 n1 + I < j -nt o L ni (64)

n +

14N

O4 .



23

where C is a constant not depending on n. Since Z/n -y 0,

X1 ,O..,Xn are independent with variance 1, EXi = e for

i > n - n2 + 1, it follows from Dosker's Theorem that

I n1 0, as n - - (65)

Similarily,

I n3 0, as n - - (66)

Now define . = X.i + e for 1 < i < [nt 0 X = X. for [nt 0 + 1 <

* i < n. Given arbitrarily : > 0, we have by Donsker's Theorem
,.';- <n-n 2

n2 <n /11 2 Sup(I nn (Xi-e) [n(to-E)] < j < n - n2)

S ) Sup(W(t)I to- < t < t0), as n -

-- * 0, a.s. , as - 0

Hence,

I, In2 - , 0 , as n o (67)

Similarly

In4 0, as n -c (68)

Summing up (65) - (68), we get

Sup(Tn - 0nt 0 nt0 < k < nt0 + 2Z) - 0

as n -* . From this and (61), (63), we obtain (60). The proof is

concluded.
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It is easy to see that t 0 = (k-t)/n is a consistent estimator of

t0 (of course, when e t 0 and thus t0 is well-defined). Earlier we

have introduced a consistent estimate a of a. Substituting t0

for t0  and a for a. We get the following theorem:

THEOREM 7. Suppose that the conditions of Theorem 6 are met, we

have

(ni 0 (1-t0 )/^)(e-e) -'i N(O,1) (69)

as n-*.

When e = 0, in which case t0 has no meaning, the statistic t 0

,i is still well-defined. It is not known whether or not (69) is true for

e = 0. So Theorem 7 cannot be employed to make tests for the hypothesis

e = 0, but (69) can be used to form a confidence interval of e, when

a / 0 is assumed in advance, or as a result of the rejection of null

hypothesis e = 0.

Of course, if X is normally distributed, or more generally, X1

satisfies condition (52), then the condition (58) in Theorem 6 and 7 can

be weakened to (logn) 2/Z - 0o

N "

4.'

0 "' -""'" "" """ """. ; '""". "i,
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